@ https://ntrs.nasa.gov/search.jsp?R=19680008611 2018-07-24T08:18:27+00:00Z

£

STATE SPACE MODELS OF REMOTE
T MANIPUIATION TASKS

@
%

D. E. Whitney
DSR 70283-5

Engineering Projects Laboratory
Department of Mechanical Engineering
Massachusetts Institute of Technology

January 1968

‘) NsG - 107-61
N - 1
(Acs6555|§ NUMB}R) 8 O 8_02 (THRU)

FACILITY FORM 602

GPO PRICE $

CESTI PRICE(S) $

Hard copy (HC) Z. 00

Microfiche (MF) ey

. ff 653 July 65
i

Man-Machine
Systems Group

ENGINEERING PROJECTS LABORATORY
INGINEERING PROJECTS LABORATOR"
NGINEERING PROJECTS LABORATO'
3INEERING PROJECTS LABORAT’
"NEERING PROJECTS LABORA"
"EERING PROJECTS LABOR
"ERING PROJECTS LABO’
"RING PROJECTS LAB
ING PROJECTS LA

NG PROJECTS L

3 PROJECTS
PROJECT
ROJEC”

ES

v

STATE SPACE MODELS OF REMOTE MANTPULATION TASKS
by
Daniel Eugene Whitney

S.B. Humanities and Engineering
Massachusetts Institute of Technolegy, 1960

S.B. Mechanical Engineering
Massachusetts Institute of Technology, 1961

S.M. Mechanical Engineering
Massachusetts Institute of Technology, 1965

Submitted in Partial Fulfillment of the
Requirements for thé Degree of
Doctor of Philosophy
at the
Massachusetts Institute of Technology

January, 1968

Elch
o E Z T
Signature of Author 577 !‘é/i . e e s %f. .« .o

Department of Mechanical Engineering, January

'd {
Certified byo . . ')’/7 L-’" ?": a ./‘ju “% 51’ dou.." F‘l\o L] 3 . .
Thesis Supervisor

Accepted by « « + « o o . (%i:?:?‘?”?(?”? ./%§%Z//%Ziifélzd”z1f“vfj\

Chairman, Departmental Committee on Graduate Students

, 1968

STATE SPACE MODELS OF REMOTE MANIPULATION TASKS

by

Daniel E. Whitney

Submitted to the Department of Mechanical Engineering in partial
fulfillment of the requirements for the degree of Doctor of Philosophy,
January, 1968.

ABSTRACT

Remote manipulation is usually difficult even if the human
operator is close to this work, because typically there is meager
feedback and the apparatus is clumsy and hard to control. Add to
this a significant time delay and efficient manipulation becomes
almost impossible. This thesis presents a formal structure by which
a computer may aid the operator and the manipulator. The computer
(or computers) maintains a model of the task site, controls the
manipulator, and receives commands from the operator.

The model is a discrete representation of all the consequences

of executing atomic commands selected from a limited set, commands

such as "Move manipulator jaws left one unit," or "Open jaws," which
themselves can be preprogrammed routines. The consequences of any
command or string of commands is a new configuration of objects and
jaws. Each configuration, differing from its most similar neighbors

by what one atomic command can accomplish, is called a state of the
task site. Hence, the model is a state space representation of the

task possibilities theoretically attainable using strings of these
commands.

A task presumably begins with the task site occupying one
such state. The operator may request any alteration in the environment
whose final configuration is represented by another state. He thus is
enabled to give commands such as "Put the wrench on the shelf," or
"Put plug A into socket B."

Upon receiving the operator's command, the computer must
find a sequence of atomic commands which, in principle, will carry the
task site from the current state to the desired state. FEach command
is assigned a cost, which may depend on fuel or time consumed, risk
or uncertainty, or arbitrary units. These costs may vary with the
physical region of the task site, depending on level of risk or
knowledge of the site. A search algorithm finds that path between
initial and final states which costs the least. Since each leg of the
path corresponds to the execution of one atomic command, the path may
be read as an ordered work description to the manipulator, and comprises
a plan for accomplishing the task.

Ty

A much smaller computer, located near the manipulator, can
put this plan into effect, observing touch sensors and comparing
progress to the plan's expectations. In case of collision or other
mishap, it can direct reflex action more quickly than could the
distant operator. The operator can concentrate on commands which
specify goals and need not concern himself with the minute details of
how these goals should be accomplished, nor with the actual executiom.
The operator is thus afforded a measure of control over the task site
itself, not merely over the manipulator.

Chapter I relates this work to similar studies in artificial
intelligence and optimal control theory. Work in both fields
consists of finding "paths" through abstract spaces in one sense or
another. Chapter II introduces the manipulation state space and employs
finite graph theory to represent the space and organize it for
algorithmic search. Six examples are given in Chapter III, showing how
some non-trivial manipulation tasks can be expressed with discrete
state spaces, such as pushing an object with the jaws or deciding how
many and in what order should objects in the way be moved aside.
Several algorithms are discussed in Chapter IV, and are related to
conventional Dynamic Programming and a heuristic search procedure.
Chapter V describes state space path-finding by means of sequences of
small state spaces rather than one big space. The small spaces are
selected by means of operator commands in the form of (possibly
recursive) functions, and offer great savings in computer memory space
and execution time over previously discussed methods. Apparatus '
used to demonstrate the ideas in Chapters II through IV is discussed
in Chapter VI, while Chapter VII is a brief look into the future.

Thesis Supervisor: Thomas B. Sheridan
Title: Associate Professor of Mechanical Engineering

ACKNOWLEDGEMENTS

My most sincere thanks to my committee: Professor
T.B. Sheridan, whose wealth of ideas nourishes the Man-Machine
Systems Laboratory; Professor W.R. Ferrell with his sharp eye for
experiment and language; and Professor L.R. Young, who found a spot
for my work in his crowded schedule. All contributed with insight
and encouragement. Thanks, too, to my wife, Dr. Cynthia K. Whitney,
for reading the manuscript, and to Miss Pat Perry for a thoroughly’
excellent typing job.

The work reported in this thesis was supported by the
National Aeronautics and Space Administration under Grant NsG 107-61
to the Man-Machine Systems Laboratory,.Engineering Projects

Laboratory, Mechanical Engineering Department of M.I.T.

o

ABSTRACT .

ACKNOWLEDGEMENTS « &« & & o ¢ 4 ¢ o o s o o o o o o «

CHAPTER I.

CHAPTER 1II.

CHAPTER III.

CHAPTER 1V.

TABLE OF CONTENTS

* o 9 e . . e . * s » e s . . e o s s s .

INTRODUCTION AND PROBLEM STATEMENT . . + « & . « . &
Review of Previous Work . . « « ¢« & ¢ & ¢ ¢ o « & &
Discussion of Some Aspects of the Problem
Similar Work in Allied Fields

A Preview of the Method . . . ¢« ¢ ¢ & &« ¢« « « « o »

THE STATE SPACE MODEL FOR MANTPULATION TASKS
Planning and Quantization ¢« ¢« + ¢ ¢ & .+ &
States and State SpPaces . . « 4 . 4 4 4 . e e e e .
Representation of the State Space as a Finite

Graph &« v v v ¢ 4 4 e 4 e e e e e e e e e e e s s
The Task Plan Found Via A Sﬁortest Path Problem . .

General Remarks . v . v ¢ & o & ¢ ¢ o s o o o« o o o

SOME EXAMPLES OF STATE SPACE MODELS OF MANIPULATION

TASKS . L] L] - . L - * * ° - L] - . . - L d » - - . . .

SHORTEST PATH PROBLEMS v '« &+ v o o &+ & & &
Algorithms . « + ¢« & ¢ ¢ ¢ v ¢ o o o o o s o

Multipath Solutions . . . & ¢« ¢ ¢ ¢ ¢ ¢ o o & &+ & &
Efficiency of Systematic and Random Procedures . . .

Efficiency of Algorithmic and Heuristic Procedures

10

. 19

22

25

32

34

40

45
52

60

64

81

85

95

99

. 104

CHAPTER V.

CHAPTER VI.

CHAPTER VII.

CONCLUSIONS

APPENDIX T.

APPENDIX II.

EXTENDING THE POWER OF THE STATE SPACE MANIPULATION
METHOD & o & 4 o o o o o o o o o o « o o o s s o & s
A Minimal State VeCLOT « « « & ¢ ¢« o o ¢ o o o & o »
Manipulation Functions . . . v o ¢ & « ¢ « = o o o
More Complicated Manipulation Functions
Recursive Manipulation FUNCtions « « « « o o o « o =
Some Remarks on Language . ; c e e s e s e s e s

General Remarks . + ¢ o« ¢ ¢ ¢ ¢ & « ¢ o o o o o o &

A PHYSICAL DEMONSTRATION OF STATE SPACE MANIPULATION
CONTROL & v 4 4 4« 6 4« o o o » o o o o o s o o 2 s
What the Demonstration Taught . . . + ¢« « o ¢« ¢ o &

Film Record .+ + o ¢ o o s o o o o o o s s s 2 2 » o
A LOOK INTO THE FUTURE . v & & o ¢« o ¢ s o o o s a o

» e e " e s & & s e e s e e + & s+ s a2 ® e s b e

MATHEMATICAL STATEMENT OF GRAPH THEORY AND REMOTE

MANIPULATION . . ¢ & 2 ¢ o o o 2 o o s s s s s o o »

TOUCH SENSOR DESIGN AND PERFORMANCE

APPENDIX IITI. BRIEF DESCRIPTION OF DEMONSTRATION COMPUTER PROGRAM.

BIOGRAPHICAL SKETCH . .« 4 & & & o o o « « o & &

REFERENCES

.

L3 LI - . » . . 9 - . ® . s e " e o

109
113
123
127
131
138

140

146

153

‘157

158

163

166

171

179

187

188

% 3

CHAPTER I

INTRODUCTION AND PROBLEM STATEMENT

Remote manipulation involves a human operator and a machine
together performing a task which could be performed more easily and
effeciently by the man alone, were the task or its environment not
too large, small, distant, ponderous, delicate, obscure, dangerous
or some combination of these. Manipulators such as the Model 8
(see Figure 1) were devised after World War II, when the Argonne
National Laboratory needed ways of performing experiments with

*
radioactive materials.[14]

The Model 8 consists of identical master
and slave ends, the former grasped and moved directly by the operator.
Present day manipulators are similar to the first ones in most respects,
although the geometry may conform more to that of the operator's
arms and shoulders, and power assist may augment his muscles.
Manipulators are used in quite complex hot lab experiments}42] for
underwater retrieval, and for complete operation and maintenance of
large radioactive research installations for extended periods of

time,[l7]

to name a few examples. Their future in an increasingly
technological society seems assured; for man continues to press his
capabilities farther out into distant and hostile environménts.'

Yet the capabilities of manipulators remain extremely limited, and

much effort is being expended to improve them.

Superscripts refer to references listed following the Appendices.

EE

Figure 1

MASTER-SLAVE MANIPULATOR, AMF MODEL 8.
AT THE LEFT, SLAVE END AT THE RIGHT.

UNIT USED BY ERNST,[10]

THE MASTER END IS
THIS IS THE

®

This thesis is concerned with making a man-computer-
manipulator team to perform Supervisory Controlled Remote Manipulation.
The manipulator's hand and the task site are considered as a system
to be controlled by the operator, with the aid of the computer.
This approach differs from previous work, in which only the |
manipulator hardware is included in the system ﬁodel. The manipulator-
task system is handled from the point of view of Modern Control
Theory: the system is to be transformed from the current state
(configuration of objects and hand) to another, desired state. An
important conclusion is that the use of such methods offers a
considerable improvement over manual control of the manipulator.

A method akin to Dynamic Programming is used to devise motion
strategies for the objects and hand. This analytic approach seems
superior, in terms of computer time and likelihood of success, to
similar work employing Heuristiec Programming to elicit strategies.

The remainder of this chanter is a review of previous work
in this field and current work in allied fields, plus a brief look
at the solution method. Chapter IT explains the state space
solution method in detail, a groun of examples following in
Chapter ITII. Chapter IV contains a discussion of related numerical
techniques. Extensions of the method and the involvement of the
human operator are discuésed in Chapter V. The apparatus used to
"eut theoretical teeth’ and demonstrate the princinles is described

in Chapter VI, while Chapter VII contains a brief look into the future.

-10-

Review of Previous Work

The technology of remote manipulation is currently branching

in two ways. One way is typified by the work of Mosher[26][27],

Bradley[S]

s and others striving to integrate the operator into the
manipulator controls so intimately that his sense of remoteness
disappears, thereby hopefully improving the limited performance

presently attainable. The by-words of this work are force feedback

and spatial correspondence. The master and slave portions of the

manipulator, as in the original Model 8, are geometrically similar,
if not identical. Regardless of the amount of force amplification
provided, a portion of the required vector force is displayed
‘directly to the operator's body at geometrically corresponding
points through force-reflecting servos. A television camera mounted
on the slave moves with the operator's head and gives the operator
the same view he would have if he were operating the slave directly
at the remote site. This seems to nromise giving the operator the
feeling that he is in fact at the remote site. Such a device
contemplated for use in outer space has been named the Telefactor
by Bradley. (Bradley, op. cit.)

Portions of such(devices have been built and tested. While
the head-slaved TV has yet to live up to all of its expectations
(Johnsen, op. cit.), an apnaratus embodying the force-reflection-
kinematic similarity idea has enabled operators to perform difficult
tasks in which force infeormation is particularly important to the
operator, such as spinnineg a hula hodp’over.one manipulator arm or
inserting a long rod into a pipe. There is room for doubt, however,

as to whether a Telefactor will work. In space applications, time

ol

?

-11-

delay has disruptive effects. Time delay can arise from simple
transmission time or from the time needed to process telemetered
data in and out of a shared channel. It was once thought that
remote manipulation with time delay between master and slave would
be impossible under manual control: the delay might cause the closed
loop consisting of operator-master-slave (see Figure 2) to become‘

"unstable" in some sense.

Master End of

» >
Display Operator Manipulator Delay
4
Delay
Slave End of
Monitor [* Task Site Manipulator il
Figure 2

MANUAL CONTROL LOOP FOR MASTER-SLAVE REMOTE MANIPULATION

Ferrell[ll] showed that an operator of a position-controlled
manipulator having no force feedback could avoid instability and
perform tasks requiring considerable accuracy simply by opening the
loop, by taking his hand off the control handle from time to time
while the remote end came to rest. The alternative to this move and
wait strategy would be to move continuouslv but so slowly that the
distance travelled by the remote end during one delay time were

manageably small for the required accuracy. Longer delays would

~12~

obviously force the user of such a strategy to move ever more slowly.
Of course, task completion time under the move and wait strategy
increases linearly with declay (Ferrell, Ref. 11), but the strain on
the operator is small.

Now the rub is that the great benefits of force feedback
accrue only if the operator keeps his hand on the control handle

all the time. Ferrell has also showntlz]

that remote positioning

is possible with direct force feedback “in spite of delay", if the
operator uses a move and wait strategy most of the time. 'However,"
Ferrell adds, "[force feedback's] usual primary advantage, the tight
closed loop control over force that it gives the operator, is lost
with delay and there is the danger of unstable movements, especially
those resulting from unexpected collisions"”. Thus a new approach

is needed to improve man's ability to manipulate where delay is a
factor.

The second branch in manipulation technology arose partly
from the above considerations. Even without delay, however, remote
manipulation is difficult. The apparatus lacks dexterity and delicate
touch feedback. Vision is limited, might be intermittent in space
applications or, in underwater applications, éompletely obhscured.
A skilled operator, using the most advanced force-reflecting
manipulators under laboratory conditions, performs his work at 'one
tenth to one fourth the speed of direct manual manipulation'.
(Goertz, op. cit.)

Sheridan[35] proposed the Supervisory Controlled Manipulator,

a device equipped with some limited intelligence of its own at the

remote end, a small computer. This computer could respond quickly

A

-13-

to emergencies with simple reflex actions or could act as an
interpreter and editor of sensor data. From this start grew the
concept of a man-computer-manipulator team (see Figure 3) in which the
man could issue "commands" of some sort, the local computer would
figure out how to accomplish them, the manipulator would act under
computer control, and success or failure, with status information
based on sensor data processed by the remote computer, would be
returned to the operator. The saving in task completion time might

be great, since the amount of transmission delay would not be a

major factor. (Preliminary results obtained by McCandlish[ZO] do

not support this, however.) A remote computer would save costly
transmission of detailed operator commands and sensor feedback. The
operator would be saved the strain of constant attention required

under manual control. The presence of the operator, on the other

hand, would allow a smaller remote computer than would a fully automatic
manipulation system. The latter would either have to be preprogrammed
to handle all possible contingencies or se endowed with a great deal

of intelligence of 1its own.

The major achievement of a supervisorv controlled manipulator,
however, would be its very nature as a team in which each element
performed the part best suited to his or its abilities. The operator,
héving flexibility, foresight, ability to vary his responses, and
knowing what he wants done, sets significant but sufficiently simple
goals for the computer-manipulator. The latter factors the stated

task into a string of subtasks, each capable of direct execution.

14~

JojeTndjuey @q0way pPaTIOI3UO)H

faogstadedng Jo wea3efg OFjewayog

HILNINOD
JLOKEY

SHOSNES

ININNOHI AN
SLOKIY

—

HILNINOD
TVD0'T

SHOLOISdH

[}

¢ *31d

STOHLINOD

Y

e
[
||
|
]

)
!

SAVIISIC

-15~

The plan thus formed (and approved by the operator) is set in motion
under his supervision. He monitors its progress and helps in case
of trouble by offering substitute goals or by taking over manually.
The Telefactor is thought of by its originators as a servo
which follows the operator's motions. The manipulator itself is the
system to be controlled. The supervisory controlled manipulator,

together with its environment, the task site and the objects to be

manipulated, can also be thought of as a system to be controlled by
the operator, although the kind of control exercised is obviously
different. The operator does not merely wave his arms, or attempt
to describe the arm motions he wishes the manipulator to enact. His
commands are likely to be verbal in nature, comprising symbolic
references to names of objects, locations and so on.

The main purvose of this research has been to establish a
fairly fo;mal description of manipulation tasks so that methods of
controlling such a system c&uld be devised. The following
assumptions were made:

1) The operator is equipped with a large computer and the

distant manipulator is equipped with a small computer.

2) There is limited communication between the operator

and the remote site.

3) The remote site constitutes a well-formed environment.
That is, it is limited in extent and complexity; the
objects are designed to be grasped readily by the
manipulator and are to be found and mbved in a morexor
less concave region (much like a well-designed console),

except that the manipulator could be forced to reach

-16-

around an ohstacle to grasp an object.

4) The operator is to tell his computer what he wants
done or how he wants the environment altered. His
computer, acting on data available from the remote
site, designs motions and actions for the arms and jaws
of the manipulator so as to accomﬁlish the operator's
desire, perhaps checking back with the operator for
help or approval.

- 5) The operator is normally not to be involved with the
detailed actions of the manipulator or with evaluation
of gross feedback such as arm position, contact with
objects, collisions with obstacles, and so on.

6) The remote computer must evaluate the gross feedback
and take stop-gap action where necessary. The
computers pust decide when to ask the operator for
help in recovering from disaster or to evaluate fine
feedback such as texture or shape identification of
unfamiliar objects.

7). The system should be capable of carrying out fairly
general tasks in real time. These tasks should not be
preprogrammed.

This type of system should be distinguished from preprogrammed
machine tools and materials handling machines such as "Unimate."Mm
While they take their instructions from an operator by manual or
symbolic inputs, they are incapable of flexibility of response or

communication with the operator during task execution. Note, too,

(S

the division of labor contemplated between operator and computers:
the operator is the goal setter and evaluator of difficult patterns;
the computers set simpler goals, do routine work and recognize
simple patterns. It 1is felt that this is an appropriate division.
Considerable work has been and is going on in this field.
The first automatic manipulation under computer.control was carried

out by Ernst.[lol

The goal of his research was to investigate ways
of equipping a computer with the abilitv to discover facts about its
environment and use these facts to alter the environment upon
command, all using hardware at its disposal. Ernst wrote an interpretive
language in which he could compose programs for carrying out specific
but non-~trivial tasks. An AMF Model 8 manipulator, equipped with
electric motors and touch sensors, was attached to the computer.

The programs were designed so that the computer might be able to
respond flexibly and help itself out of trouble, but no intercession
by the operator was providea for. Ernst pointed out the computer's
need for some internal model of the envifonment, although he did not
describe the form of model he used.

[34] and Barber[Z] have

McCandlish (op. cit.), Rarich
investigated various aspects of supervisory controlled manipulation
at M.I.T. McCandlish simulated a rate controlled two dimensional
ménipulator on a computer. The operator viewed a symbolic sketch of
the system on a cathode ray oscilloscope display. Extensive
experiments showed that a move and wait strategy with rate control

could overcome transmission delays. Supervisory controlled manipulation

was simulated by providing subroutines to carry out the exacting

-18~-

portions of the test task. While these subroutines did not
significantly reduce task completion times, they made the task so
much easier, even with a delay of 12.8 seconds, that the operators
relaxed and consequently made more errors than with delayed manual
control! Apparently the precision required of the operator's
judgements was reduced but not eliminated. Rarich composed an
input language similar in some respects to Ernst's, but capable
of being accepted in real time by the computer. The computer was
equipped to display the status of touch sensors and repért success
or failure. Barber comvosed an input language more like FORTRAN,
capable of accepting (in real time) routines with logical structure
and b:anching conditioned on the task environment. No extensive
experiments have been performed with either of these languages.

The problem of guiding a multidegree-of-freedom manipulator,
which is a sub-problem of the work reported in this thesis, has
been attacked as a ''classical’ Optimal Control problem by Mergler

and Hammond.[zzl

They demonstrated that, even when the manipulator
was redundant (so that some degrees of freedom could undergo
arbitrary motions in spite of the task), a computer could (in real
time, again) plan time histories for all the degrees of freedom,
making the best use of the redundancies, to take the manipulator jaws
from one location to another. The computational scheme involved
judging competitive paths against a minimum cost criterion. The
authors observed that thé resulting paths were not too satisfactory
and correctly blamed the cost criterion.

[361[37]

Tomovic and his colleagues -have also pointed out

the applicability of Modern Control theory to problems in

-«

~19-

prosthetics and bioengineering. (The extensions to manipulation

are direct.) Tomovié¢ has built and tested an artificial prosthetic
hand which has touch sensors and will grasp via reflex action an
object which 1s touched. All of this work is confined to controlling
the manipulator or prosthesis itself, without reference to a task

or to a man-machine dialog.

Currently, McCarthy[ZI]

is working on "humanoids" which take
orders from human supervisors. Minsky[ZA] of M.I.T.'s Project MAC
is building an autonomous robot, complete with vision and hopefully

able to act and manipulate intelligently on its own.

Discussion of Some Aspects of the Problenm

Of the many challenges which the design of a supervisory
controlled manipulator presents, two which stand out are:
How to equip thé system with the‘ability to
understand whatAthe operator wants done, (l)n
and
How to enable the system to translate the operator's
desire into a plan of action which 1is relevant
to the task environment and capable of achieving
the operator's goal. (2)
This thesis concentrates on these two problems. Some general remarks
are appropriate at this point.
Consider the supervisory controlled manipulator as the
operator's friend, a cooperative servant. If the system were
merely a manually controlled device, the '"commands™" we could give

*
with our hands could appropriately be called manipulator primitives ,

*
A better picture of this idea will emerge below.

-20-~

describable verbally by such phrases as ''open the jaws,'" "move
through a 60° arc," "move 4 inches left or until you touch something,"
commands which, by the nature of a manually controlled device, need
no further interpretation. To build the kind of system discussed

in the first section of fhis chapter, we must transcend this kind

of primitive. We would like the operator to be able to give commands

at some approximation to the human primitive level, such as ''pick

up the pencil,"” or "put it on the table, in the center," and so on.
A string of dozens or perhans hundredsvof manipulator primitives
might correspond to each of these reiatively simple instructions.
The local computer should generate such strings to save the operator
having to think up. describe verbally (perish the thought!) or
manually perform the manipulator primitives himself. The operator,
using human primitives, is granted two advantages:

1) He can refer to actions .and objects symbolically,
using their names.

2) He can address himself to‘géglg_at something like a
human level, rather than to methods at the
manipulator’'s level.

(We have merely restated the two challenges from above.)

A good manipulator servant must have the following

cﬁaracteristics:

A) It has a symbolic representation or model of the task
site. All objects, obstacles, fixed support surfaces
and effectors (jaws, tools, etc.) are represented

in their proper spatial relationships.

-21-

B) It can identify goals in this model. A goal may be
thought of as a particular configuration of the
objects, obstacles and effectors which is of concern
to the operator.

C) It understands how the effectors can alter the task
site as well as how these alterations are represented
in the model.

D) It can receive commands which specify goals to be
achieved and constraints to be obeved. Then, using
A), B), and C), it can translate the command into an
expanded equivalent: "expanded' means that strings
of manipulator primitives have been substituted for
the human primitive in the command; "equivalent"
means that these manipulator primitives, when carried
out, can be expected to accomplish the stated goal.
That is, the system can make a plan for carrying out
the task.

E) It can execute this plan, judging its progress against
the plan's expectations, keeping track of its progress
by updating the model, and asking fof help if trouble |

develops or things do not go according to the plan.

Now we can draw a more detailed diagram of this sytem. See
Figure 4. The local computer is shown receiving commands, clarifying
them with thé operator, sending the plan to the remote computer, and
receiving the remote computer's requests for aid or reports of

complete or partial success. The remote computer stores the plan,

-22-

Local
Feedback
7 Command o Plan
- Local Remote
Operator Question | Computer Message Computer 3\
oo
oY message _________J i
‘ Remote
i I’ Feedback
Model
Manipulator
4
Sensors [% Task
Y
]V
Y
Display Monitor
Figure 4

FUNCTIONAL DIAGRAM OF A SUPERVISORY CONTROLLED MANTPULATOR

operates the manipulator, receives sensor data, and aids in display

presentation. The display closes the outer feedback loop.

Similar Work in Allied Fields

The challenges posed above bear some similarity to problems
in the field of artificial intelligence.[23] Workers in this
field attempt to equip a machine (usually a high speed computer) with
the ability to solve fairly general problems of a limited class.

Examples include the Logic Theory Machine[zgl and the General Problem

-23-

(30]

Solver. Mechanical problem solvers must find an efficient and
efficacious sequence of elementary items (postulates, transformations
and previously proved theorems: openings, moves, captures:; methods
of composition, decomposition, substitution, etc.) which comprises
a proof, winning game, or problem solution, as the case may be.
Such research usually investigates cognitive processes with the goal
of ultimately producing a machine capable of autonomously solving
problems as yet unsolved (although this has yet to be achieved).
Occasionally the effort has been to simulate human thinking processes.
The systems created thus far are quite complex, the main
difficulty being challenge (2). It is known in most of the
problems studied that at least one finite* solution sequence exists.
Were the sequence not too long and the alternatives at each step too
numerous, direct enumeration of sequences would be a good solution
method. Since an intelligent human could reject the vast majority
of the proposed solutions after seeing the first few steps, efficiency
and esthetics demand a better way. |
One way is to test each proposed element for its ability to
contribute effectively. Unfortunately, this is difficult or impossible
in most artificial intelligence problems. Howevef, because we can
make a direct geometric model of a manipulation task, it is relatively
easy to subject a proposed manipulator primitive to such a test. As
a result, standard hill-climbing techniques are available to us.
The consequences of this fact will emerge below. H1ill climbing is

not directly applicable to chess, for example, since it is an adversary

A finite sequence contains a finite number of elements.

-24-

game and solutions must take account of the opponent's responses.
This calls for a technique called Minimax, common in Game Theory.
Fortunately, in manipulation we have no adversary!

The solution method usually employed in artificial
intelligence work is called Heuristic Programming. Using certain
rules of thumb (heuristics), the machine selects methods from a
list and attempts a direct solution. Failing that, other methods
attempt to produce relevant subproblems, which are treated in
turn just like the original problem, possibly being broken down
still further. Generation of subproblems is one of the hardest
parts, for it may not be clear which of many possible subproblems
will lead mdst directly, 1f at all, toward the solution of the main
problem, and the system may not know when to abandon one chain of
subproblems and try another. The result is that such systems usually
work a long time, by human sﬁandards, or else cannot solve much
beyond the most trivial problems.

It should be noted (Ernst, op. cit.) that manipulation
rarely presents unsolved problems in any practical sense. There
are some obvious constraints which are common to many manipulation
tasks. TFor example, an object must be grasped before it can be
lifted; it must be touched in a particular place before it can be
pushed in a particular direction. What we want is a system which
can deduce specific solutions to problems posed in a certain context
(environment), where the general solutions are known, at least to the
operator. Such terms do not suffice to describe a theorem-proving
machine, which has no model on which to maﬁ out solutions or to test

steps for their usefulness.

-25-

Why, it may be asked, is a model so vital, if the constraints
are so obvious? Why not just let the manipulator poke around until
it has completed the task? The answer to this is the same as the
answer to "Why can't one million monkeys with one million typewriters
generate the works of4Shakespeare?" The trouble is that 1) it would
take approximately forever, and 2) there would be no way to extract
the desired result from the boundless mass of irrelevant trivia
{possibly destructive arﬁ waving or trashy monkey literature) which
would be produced at the same time. The model also has the virtue
of being a relatively cost-free proving ground for triél solutions,

a fast time scale analog (albeit in digital form) in the tradition

of Zeiboltz and Paynter.[AA]

A Preview of the Method

The model we have availablel(and will describe below) is
a true metric space: it has coordinates just like physical space
and we can measure how far apart the points are. Assume, for example,
that we have a single object sitting on a table. See Figure 5.
We want it slid to another point on the table, avoiding the
obstacle on the way. Infinitely many trajectorieé for the object
are available, of which two are shown. WNaturally, the operator

wants the local computer to choose a trajectory, a direct one if possible.

-26~

..‘...1_‘_ Desired Location
wi_1 T[> of Object

/§ 4-z__l..-—————-- Obstacle
/ i

Object ﬂ*z____,,D__,_ -

Figure 5

AN OBJFCT AND OBSTACLE ON A TABLE

An engineer could identify this as a control problem: we wish to
"steer" the object from one point on the table to another. If we
have a force vector available with which to push the object

around, we can write the equations of motion of the object in

vector form as

X(t) = £(X(8), u(e)) (3a)
with
-
¥ . .
X =] % x = dx/dt, y = dy/dt, and (x,y) = the
¥ object's coordinates (3b)

-27~

Fx Fx = x component of control force
E:
Fy Fy = y component of control force (3¢)
and f(X(t), u(t)) = some appropriate vector function which

expresses the object's dynamics, frictionm,
and so on. (3d)

X(t) is called the state vector of the system consisting of the

object, because it describes where the object is plus enough
dynamic information to tell us what will happen when we apply

control. u(t) is called the control vector. The problem is then

<
to find the appropriate control history u(t), to e s tf, with which

to change X from

- -1
X
o g .
gg(to) =l v, (implying object at rest at (xo,yo) at t = to)
0
0 (42)
to . _
&(tf) =| v¢ (implying object at rest at (xf,yf) at t = tf)
0
0 ‘ (4b)

while constraining x and v not to take values in or too near the
obstacle or beyond the edge of the table. Such problems are common,
for example, in astronautical guidance and chemical process control

and are solved using the theory of optimal control.[1][38]

The
approach is to test each possible trajectory, which fits conditions 4)

and satisfies the constraints, against a cost criterion, such as

~28~

e
mininize J = J (ax® + by?) dt (5a)
t
o
or, more generally
te
minimize J = L(X, u, t) dt (5b)

* ey

o

The form of the function L(X, u, t) determines which trajectory
will be selected. Since one can choose any non-negative function
for L, we have considerable control over what the solution
trajectory will look like.‘

The methods used to solve the problem include Calculus of
Variations, the Maximum Principle, and Dynamic Programming. The
result is the particular or "optimal" control history u*(t) which
we should use. If we represent u*(t) one-dimensionally (see Figure 6),

and imagine that it is made of

‘u*(t)

du -—1

safing

Figure 6

CONTROL HISTORY BROKEN INTO ELEMENTARY STEPS

-2Q—

little steps of height du, then we can think of the control history
u*(t) as a (continuous) sequence of elementary control actions built
up by selecting, in the correct order and with replacement, from the
limited set {du, -du}. In this sense, application of Optimal Control
theory yields the type of elementary sequence that we discussed

in connection with manipulator primitives.

To use this theory for more general manipulation problems,
we must formulate our model of the system as a metric space so that
we can write equations like (3) to describe the manipulator and the
task gite, (4) to describe what we want done, and (5) to indicate
how we want it done,

The model used in this little example has nothing to do with
the manipuiator itself. We shall see below that the most interesting
models concentrate on the objects and obstacles in the enviromment,
and involve the manipulator only to the extent of dictating the
motions of its jaws, including their grasping and releasing actions,

so that task constraints are satisfied. Such constraints include

1) grasping the correct object, 2) avoiding obstacles, 3) generating
"Grasp'' from the correct sequence of jaw motions, opening and closing,
and so on. 1In soﬁe environments, this will be sufficient to generate
a useful solution, while in others, more details of the manipulator
must be included in the model, in order, for example, that its
"elbows' not strike obstacles.

The model which concentrates on the task should he
distinguished from that used by Tomovié or Mergler and Hammond.

These workers are concerned with steering the manipulator, and use the

-30-

very method indicated by equations (3) - (5) to do it. However,
because the manipulator is being steered, rather than the task, and
because the manipulator is thought of as a dynamic svstem described
by differential equations, the models describing them are dynamic,
concerned basically with velocities, accelerations, and forces.
Optimization is usually on the basis of some convenient quantity, such
as energy or time, which is relevant to such models. Optimization
is sometimes used merely to absorb redundancy in the manipulator's
structure, a strategy which really wastes the redundancy, The
latter should either be used positively to reach into out of the way
places (a task constraint), or else the manipulator should be built
more simply in the first place. A dynamic model of a multidegree of
freedom manipulator would in anv case require a great deal of
computing time and space, little of which could be directed toward
the constraints of the task.

We define manipulation tasks as tasks in which the positions
and orientations of objects are changed. We think of the task site
as being initially at rest, and think of the result of the task as an
alteration of the geometric configuration of the task site, such that
it ends up at rest. This means that we specifically avoid such tasks
as catching a ball or balancing a stick on end. The inteéresting
features of task sites are therefore the static arrangement of the
objects and obstacles, together with the location of the effectors
which can alter this arrangement. We group these features into a
set called the state of the system. To be sure, an object being

carried in the jaws has a velocity, but we are interested in the

-31-

geometric fact that the jaws coincide with part of the object and that
the sequences of positions occupied by object and jaws bear the same
static, geometric relation to each other all the while the object
is being carried. That is, regardless of the jaws' velocity, the
object 1is "iﬁ the jaws," and that is the task constraint that is
important about carrying.

The notion of "state' appears in artificial intelligence
work as well as control theory. See, for example, the General

Problem Solver[30].

A problem is described by a list of features, the
list comprising the problem state. The GPS attempts to reduce the
difference between this state and the desired one (say, a theorem
to be proved), using methods appropriate to each "difference" which
can be identified. However, there 1s no metric for measuring such
state transitions and direct analytic methods are not applicable.

‘The idea of a "motion space" appears in the work of Greene.tls]
He was developing mathematical models of the sensorimotor behavior of
infants. He modelled motion as a space consisting of "all possibilities
of [motion]...without regard to the choice actually made in any one
instance.'" Motions were to be planned by a separate ''decision system"
in an unspecified manner. The notion of control is. not central
to Greene's work, since he is primarily concerned with the existence,
in a mathematical sense, of such spaces and paths in them corresponding
to motion in physical space.

In the next chapter, we shall formulate our state space
model of remote manipulation. Its similarities and dissimilarities to

the work cited above will be clear.

-32-

CHAPTER I1

THE STATE SPACE MODEL FOR MANTPULATION TASKS

It was claimed in Chapter I that manipulation does
not really present unsolved problems. The solutions, in fact,
display a certain similarity, when described as sequences of such
actions as: move empty jaws to X, grasp, carry to Y, release,
move empty jaws to... The same few elementary motions are combined
in many ways to make up complex actions, just as the few letters of
the alphabet can be used to spell so many meaningful words.

The sequence of elementary motions must satisfy
physical constraints, of which the foremost is that their combined
result be the desired configuration of the environment. Other
physical constraints include avoidance of obstacles, accurate
terminal rendezvous of jaws and an object to be grasped, and so on.

On a higher (almost verbal) level, one can speak of logical
constraints: the motion has to '"make sense' or else the task
cannot be accomplished. TFor example, to carry an object, the system
must first know the location of the object's handle. Then the jaws
must be moved there, then the handle grasped, then the object carried.
At the terminal location, the system must test for support under
the object, then release, then move clear. If the system tries to
grasp first, then move the jaws to the object, then release, and then
carry, nothing will get done. The correct sequence can easily be

interpreted as a program:

-33-

CARRY OBJECT A TO LOCATION X

know location
of A's handle

table not found

» help!

read
sensors

yesl

form motion plan,
avoiding obstacles.l .__,.
consult model :

no plan can
be formed =0 help!

move |

contact
anything
?

are jaws
in position to
grasp A

then it is add it to
an unknown the model
obstacle

o _to
step 3

yes

grasp

dimensions and other
characteristics match

do object's

hosgfgxpecte-

-34-

... and so on. There are two key parts of this program. First is

the box labelled "Form motion plan, avoiding obstacles. Consult model."
Most of the action we shall study takes place here. Second is the

way in which the program recovers from collisions with unknown
obstacles. This might be the most difficult part of the program,
except that the existence of a proper model and the box "Form motion
plan..." make it easy. All obstacles are treated alike, no matter where
along the path they may turn up. The planning of motion follows the
same rules, regardless of whether we are making the first plan, or the
one following collision with the 7th unknown obstaclé. The system
need know only how far along the old plan it has gone. This indicates
that manipulation has some recursive properties; more interesting

ones will be discussed in later chapters.

Planning and Quantization

The planning of motion can actually be quite extensive. The
entire sequence of motions, including all grasps and releases, can
be generated at once as part of one plan. When we apply the plan
to the model, we can tell if the plan can be expected to do what we
want. It is our contention that planning is essentially different
from execution, although they go hand in hand. In planning, the
computer interacts with the operator and an idealized version of the
task site, the model. 1In execution, the computer must operate the
manipﬁlator and interact with the task site itself. The plan is a
sort of verbal statement of how to do the task, less detailed as the

level of the model's abstraction increases: "If we move like so and

~35-

grab A, then move like that, shifting it to X, that should do it."
During execution, these grabs and shifts could prove difficult
to achieve. No amount of advance planning can guarantee success
on the first try. The locations and orientations of objects cannot
be known precisely, so "grasp'" may fail. Vibration or collision may
shake the object loose from the jaws. Barring infinite'planning
intelligence, the burden of handling such events must fall on the
execution function. We therefore must consider planning as a model
of execution.

Let us then, for planning purposes, conceptualize manipulator
motions as static atoms to be strung together in an appropriate
way so as to span the task which the operator specifies in the
model. We should limit ourselves to as few different kinds of such

atomic commands as possible. For example,

Open jaws

Close jaws left 1)
right

Move jaws one inch forward
backward

Note two things about this set: First, it 1is static and geometric,
rather than dynamic. We are interested in the static result of each
action in the plan. Only during execution do we watch while each
action is be;yg accomplished, so that we may monitor progress and
recover from a breakdown in the plan.

Second, the set is quantized. All points in the task site

reachable by any combination of these commandé lie on a grid of

~36-

one inch squares. The size of one inch is illustrative only, but
it seems inevitable for the models and solution methods we use that
quantization at some level be employed.

Quantization in the elementary motions brings quantization
to the plan, hence to the task model. If the quantization size is
too large, important features of the environment or requirements of
the task may fall between the points and be ignored or unexpressable.
If the quantization size is too small, much computing time and
storage space will be wasted, since the description will be
unnecessarily detailed. The quantization need not be the same size
all over: it may be small near objects or places of interest and
be large in wide open spaces where there is nothing of interest.

Quantization affects the way the plan is formed, and how
it is carried out. If the task site and the objects are quantized
to extreme fineness, then the required jaw motions can be planned
with equal fineness and, except for bad information, the plan can
practically be run open loop, with little'attention to feedback from
the environment. But this much quantization overloads the computer.
If there is no information at all concerning object location and
shape (equivalently, no Quantization points), there is a minimum of
planning and a maximum of fumbling about. This fumbling must be
ofganized very carefully into well-planned exploration, as Ernst
did (Erhst, op. ¢it.), but mot so well-planned that general tasks
cannot be easily input and executed, or so loose that damage is done
or too much time is required for execution.

In between, we have a practical quantization level, bearable

-37=-

by the computer, in which a desired object appears on a minimum
of one quantization point. (Obstacles, undesired objects, may be
conveniently made to 'disappear' with no loss of vital information
if the grid size is made large in their vicinity and the points
fall around but not in them.) The required motions must now be
planned using limited precision, limited knowledge of objects' size,
shape, location and orientation. As a result, there may be some
collisions. The jaws ﬁay not be properly aligned or located for
grasping. These deficiencies in the plan must be made up for by
more sophisticated execution, although less outright fumbling should
be needed. We trade the storage and computation required by fine
quantization for a less certain plan. This plan requires in turn
more computation for its execution, but there is computing time
available during execution, even time enough to make a new plan.
Then grasping an object may be accomplished by bringing the
jaws to the best location the plan can generate; at this point,
some well-planned, even rigidly patterned, fumbling commences in a
limited region. The jaws are opened extra wide to allow for
uncertainty in the object's size, location and orientation. The
computer moves the jaws and watches the touch sen§ors for clues as to
how the operation is progressing. This introduces yet another form
of quantization, since continuous touch sensors are not available,
even to people. If there‘is a single sensor on the inner face of
each manipulator jaw, then the following four grasping situations

will "look" the same, since both sensors will report contact:

-38- .-

Figure 1

FOUR GRASPING SITUATIONS WHICH GIVE THE SAME TOUCH SENSOR REPORT

Of these, only nuﬁber 3 is satisfactory for grasping.
It appears that sensors arrayed as in Figure 2 are more likely to
give meaningful grasping information. More sensor points will again

put strains on the computer:

,;;7 Sensing Elements
Figure 2

PROBABLE MINIMAL TOUCH SENSOR DESIGN

-39~

Note, however, that infinitely fine touch sensor quantization
is not really needed, rather only enough to do the tasks we are
capable of, using the elementary atomic commands at our disposal.

The sensor points must be close enough together so that objects do
not fall between. Several sensor points should fall on the object
when both jaws and object lie on quantization points. Conversely,
glven workable touch sensor arrangement, the plan of gross motions
can be somewhat relaxed in precision, because collisions can be
sensed before damage is done, and errors in jaw position can be
corrected during grasping. Thus plan, model quantization, task
execution, and sensor quantization all interact: extra investment in
sensors and execution strategies reduces greatly the planning effort
required to manipulate.

Not all the information about an object need be described
by quantization points on the model. It is easier, for example, to
store in a separate table such information as the current best values
of the orientation of the object's handle, the size and shape
thereof, its distance from the object's center, and so on, storing
on the model grid only the rough location of the object's center with
no reference to handles. The plan is formed using‘this rough location
plus the orientation and distance data about the handle, taken from
the table. During execution, reference is made to size and shape
information only when grasping begins, first to ensure that the jaws
open wide enough, second to confirm that the correct object has been
grasped. The interplay of plan and execution is a very complex one.

Only the most basic tradeoffs have been discussed here. Ernst's work

~40-

concentrated on execution strategies. In this thesis, the emphasis
will be on planning.

The planning function must be adept at putting together
strings of atomic commands. This forms the core of many artificial
intelligence problems. Here, however, we have the advantage of a
model on which we can measure the effect of performing a given
elementary motion. Our situation is thus very similar to that which
arises in Optimal Control Theory, in which command elements are

strung together to accomplish a control task.

States and State Spaces

Optimal Control Theory is closely linked with the concept

of state. The state of a system is a list, called the state vector,

of quantities (state variables) sufficient to tell us what we want

to know about the system's configuration plus which parts of that
configuration will change if we apply control. Control here means
a string of elementary motions (commands), drawn from a set like (1).
It appears that we can be somewhat arbitrary about what quantities
we put into the state vector. Since elementary commands make noticeable
changes in the task site, the state vector describing some task had
better include the quantities relevant to that task which are subject
to alteration by the allowed commands.

Since the state vector is a list of numbers changeable by
the commands, we can think of the set of all allowed values of the
state vector as a discrete array of points, usually called the state

space. (It is discrete because the commands are quantized.) Consider

41~

an example on the minds of many people this year in Boston, baseball.
Let the system be the batter during one time at bat, and let us be
interested solely in the ball and strike count. The pitcher can
pitch a ball or a strike, up to 4 of the former and 3 of the latter.

For elementary commands, we then have

pitch a ball

(2)
pitch a strike
For the state vector, we have
number of balls
(3

number of strikes

For the state space, we have Figure 3.

Anumber of strikes

2 ¢ ° . .
1 ¢ » ° *
0 I} - ° ‘,.number of
0 1 2 3 balls
Figure 3

STATE SPACE CORRESPONDING TO BALL-STRIKE COUNT

Thus, before each pitch, including the first, the system occupies

one of the states in the space, the first being (0,0). We can show

42~

the possible results of each pitch, excluding hits and other
complications, by connecting certain of the states with lines,

as in Figure 4. Each line implies that execution of one of the
allowed commands will transform the system from the state at one end

of the line to the state at the other end.

strikes
2 . r.
1 -
0 — - - & balls
0 1 2 3

Figure 4

STATE SPACE SHOWING ALLOWED TRANSITIONS

The arrows indicate that the ball-strike count, consistently with
the allowed commands, can increase but not decrease. The absence
of diagonal lines indicates that, on any ome pitch, the number of
balls or the number of strikes can increase, but not both.

If we wanted to model an entire half inning of play, we
would need to add at least one more state variable, the number of
outs. This would require a third axis, normal to the other two,
bearing values 0, 1, 2. Of course, we could expand the state vector
still further if we wished, to indicate which bases were occupied, or

what inning it was, or what the score was, or'many others. A larger

43—

discrete space would result, agéin with some of the points connected

by lines. It 1is up to us, depending on our interests, to construct

the state vector as we wish. Then we imagine that the Allowed

commands are applied one at a time, again and again, in all combinations.
This generates the staté space.

In manipulation, we are interested inbthe positioné and
orientatiohs of objects and jaws (but not their velocitieé or
accelerations), since these are the stuff of manipulation. If we
congider all possible objects at once, the space which keeps track
of all their positioné will be large indeed. So let us think first
of one object only, and consider only its position on a table. A
point in the space corresponds to the fact that the object is at a
certain point on the table. Consider next one object and the jaws.
A point in the space then must correspond to the fact that the
object is at one point on the table and the jaws are at another
(but not necessarily different) point on the table. To change the
state of the system from one of these points to another, wé apply
commands from the allowed set. Tﬁe totality of points then represents
all possible combinations of (quantized) object location and
(quantized) jaw location which can be physically reélized uéing sequences
of the allowed commands. Thus points in this space correspond to
situations which have meaning in terms of manipulation, and each
point represents a unique situatidn.

Of course, some sequences of commands make significant

changes in state, changes we call tasks. While "open jaws" may not

44—

be significant by itself, a sequence which results in the object being
shifted from one point on the table to another can be dignified

with the name task, since it corresponds to a significant, if simple,
human primitive.

The operator confronts the task site, or some
representational display of it, while the local computer confronts
the state space corresponding to relevant features of the task site.
The operator wants a particular task accomplished. If the desired
configuration of the task site is represented by a point in the state
space, then it is easy to make the local computer understand that
the operator's desire will be achieved if the system state is driven
from its present location in state space to the desired one. An
accomplishable task corresponds to a change in state which must span
many intervening states in the space. A path or sequence of states
may then be said to exist between the current state and the desired
itate. Each leg of the path, connecting two adjacent states, is
accomplished by executing one of the allowed commands. The path
reads like an ordered work description to the manipulator. It is
easily coded as a short sequence of numbers and sent to the remote
computer. This path is found via search of the alternatives, guided
by some cost or optimality criterion. More on this below.

The elementary commands are to be accomplished one at a
rime, in path order, by preprogrammed, but not rigid, routines. Such
routines must be capable of testing for proper completion of the
command or for unexpected sense inputs. The work of Ernst shows that

this can be done.

445~

To summarize, the model is a set of all possible configurations
we are interested in. Each configuration differs from its immediate
neighbors in the state space model by exactly what one command in the
elementary set can accomplish. Thus we may say that the model, the
state space, is the set of all task possibilities achievable by
arbitrary sequences of the allowed commands. The operator, by
indicating a new state he wishes the task site to occupy, designates
a task he wants done. He is thus in control of the task site, and

this is what we wanted back in Chapter I,

Representation of the State Space as a Finite Graph

In this section, we make a formal statement of the State

[51032]

Space model in terms of Graph Theory. A graph, G, denoted by

G = (X,I)

is a description of the relationships whiqh a function I imposes on
~ the elements x of the set X. Usually we draw the graph as a picture,

with vertices or nodes representing the x's, and the relationships

in I' represented by directed line segments or arcs connecting some of
the nodes. A graph is finite if it contains a finite number of nodes.
There is an arc directed from x to y if y is an element of the set

I'(x), which is the set of all nodes which can be reached from x in one

jump. vy is then said to be adjacent to x. See Figure 5.

x d”’ﬂ—’~“\‘\s.j

Figure 5

ARC FROM x TO y

~46~-

If y is an element of I'(x) and x is an element of I'(y), then there

is an arc from x to y and another arc from y to x. See Figure 6.

x >

Figure 6

ARCS FROM x TO y AND y TO x

This is often condensed to a single undirected edge, as in Figure 7,
although we do not make this condensation if for some reason we wish

to distinguish one arc from the other.

Figure 7

EDGE BETWEEN x AND y

-

A sequence of arcs U = {ﬁl, Uys .«.}, such that the terminal node of

u, is the initial node of Uiire is called a path. An arc from node x
to itself is called a loop, and a path from x which eventually returns
to x is a cycle.

A directed graph contains only arcs, while an undirected

graph contains only edges. A mixed graph may coﬁtain some of both.
(For example, a city street map in which some streets are one way
may be represented by a mixed graph in which intersections of streets
are the nodes and streets are the edges or arcs.)

Graphs are used to represent chemical compounds, computer

programs, manufacturing processes, puzzles and'games, etc. Graphs

-47-

are appropriate in problems in which connectivity, relatedness,
adjacency, distance, combinations, or like concepts are of interest.
This makes graphs ideally suited to represent manipulation task
situations.

Directed graphs are useful to describe problems in order

or dominance relations like:

Thé Arab ambassador and tﬁe Israéli Ambassador
don't like eaéh other

The Russian ambassador is senior to the
Canadian ambassador

The Slabovian ambassador's wife is in love with

the Transylvanian ambassador

Can the Chief of Protocol seat all the ambassadors and their wives
at one table without insulting or embarrasing anyone? Such a problem ’
can readily be solved if there are no cycles in the corresponding

graph[7]

, but the algorithms break down if there are cycles or if the
graph is mixed.

Undirected graphs arise in maze problems, for example,
where the vertices are corridor junctions and the edges are the
corridors. Then we may ask for a path which leads to the exit.

Algorithms exist for finding such a path (Berge, op. cit.). The

kind of problem we will deal with is one in which there usually exist

~4,8~

many paths between two vertices. Then we may ask two related
questions:
1) How do we eliminate redundant paths between two points?
2) How do we find a path most to our liking?
The answer to 2) contains the answer to 1).*
Let us start with about the simplest physical manipulation
space, a line on a table. On this line lies an object. The

manipulator jaws can move along the line, open and close. See

Figure 8.

Figure 8

PHYSICAL SPACE

Thus we are equipped to manipulate the object from one of the five
designated points on the line to another. The graph or state space
we are about to draw will contain some of the logical and physical

constraints required to accomplish all the manipulation tasks

*
Appendix I states the results of this chapter in more formal
mathematical terms. '

-49-

possible in this limited context. Let us, as a first approximation,
take for state variables the location of the jaws and an indicator
which tells whether the jaws are open or closed:
- xJ
S = = state vector
H

where

Xy =X coordinate of the jaws, x, =1, 2, ..., 5.

J
0 1f the jaws are open
H =

1l if the jaws are closed

It is probably true that no simpler state vector exists which will
allow even a semblance of manipulation to be planned in this
physical space. If one omits H, one can only steer the jaws around,
(cf. Mergler and Hammond or Tomovié and Petrovié, op. cit.) but
cannot express the notion of grasping; which is fundamental to
manipulation. If one substitutes the object's coordinate for that
of the jaws, one can plan motions of the object once it has been
grasped, but the logical problem of expressing the sequence 'move
empty, grasp, carry..." is not solved. We shall develop a solution
step by step in the next few pages.

The elementary commands which are relevant in this context
are those which make unit changes in the elements of the state

vector. Thus:

Open jaws
Close jaws
Elementary commands = { Move jaws one unit right

Move jaws one unit left

-50~

Applying these commands is the only way to alter the state variables,
hence the only way to make changes in the physical space. Since

we allow 5 values for Xy and two for H, the graph or state space

(Figure 9) has 10 states:

Open
Close

Allowed Commands =
Move right 1 unit

Move left 1 unit

"
A H
1 = closed i ¢ ® . ® ®
0= open" L e ' 'S ° ®
e

Figure 9

STATE SPACE CORRESPONDING TO FIGURE 8

Note that the state space has more dimensions tﬁan the corresponding
physical space. This is typical of such spaces and will cause us some
grief later on.

By inspecting the set of allowed commands and the
environment, we can deduce what commands can be executed at each
point in state space, and which canhot. These crucial distinctions

can be made at each state without reference to what is possible at

-51-

any other state. Thus we obtain Figure 10:

1 = closed

0 = open B g

4

Figure 10

ALLOWED TRANSITIONS OF S BASED ON FIGURE 8

The existence of a horizontal edge between two states implies that

the jaws méy move in physical‘space between thé corresponding
locations. A vertical line means that the jaws may open or close

at the corresponding point in physical space. The two missing lines
show that the closed jaws, when in locations 1 or 3, cannot move to
location 2, because a collision will occur with the object. If the
object were unknown, these two lines would be present. The jaws,
equipped with touch sensors, would discover the object in time and its
preseﬁce would be denoted in the state space by the deletion of these
two lines. The system, according to Figure 8, currently occupies
state S = [ﬁ]. Say we want the jaws to grasp the object. This means
we want the system to occupy state § [i] Thus we have demonstrated,
fof this simple example, the ability of the state space model to
‘represent a task statement and to embody the physical constraint of

obstacle avoidance.

-52-

The Task Plan Found Via a Shortest Path Problem

Now, how does the local computer figure out that the jaws
must move over, open, and straddle the object, then close, this
being the obvious logical requirement for accomplishing the operator's
desire? The procedure is to assign some length or cost to each
allowed transition on the graph, basing these costs, not
necessarily on any physical concept of distance, but rather on how
in general we would like the task carried out, still without dictating
the:details of the solution. For exémple, openiﬁg and closing are
cheap in fuel and not too dangerous to successful completion of the
task, so each open-close edge is priced the lowest, one unit.
For esthetic reasons, we deem it inappropriate for the jaws to move
about wide open, except when necessary, so we charge less for motions
of the closed jaws (horizontal lines for which H = 1) than we do for
motions of the open jaws. This is inconsistent, as the caréful
reader has probably noticed, with the reasonable notion ofkdharging
more for carrying the object in the closed jaws than for motions of
the empty open jaws alone. This will be remedied shortly. 1In

Figure 11 we show this structure of costs:

A H

. . 2 2
1l = closed o -

1 1 1 1 1

- - —

0 open 3 3 3 3

'l) i [l 'l >

1 2 3 4 5 X5

Figure 11

STATE SPACE WITH COST STRUCTURE AND A PATH FROM S = [ﬂ 0 S = [2]

~53-

Costs may be assigned for a wide variety of reasons, some
of which we indicated above: risk, energy oi fuel, time, distance, or
even esthetics. These costs may be assigned uniformly to each edge
on the graph representing execution of a particular elementary
command, as we do in Figure 11, or we may charge more in some
regions of state space than in others if there is a good reason
for doing so, such as increased risk, or insufficient information
concerning the physical environment in the corresponding physical
areas. The cost values may be arbitrary, or may be derived from
physical considerations, or may indeed represent the desires, whims
br even fears of the operator.

As the reader must by now suspect, we then ask the
computer to find the shortest (cheapest, safest, fastest, prettiest)
path in state space from the current state (S = [{]) to the desired
state (S = [z]). The resulting path will do its best to avoid the
costly regions or commands és much as possible. By assigning the
costs, we thus have considerable control over the characteristics
of the winning path. In Figure 11 above, the shortest path is indicated
by arrows. Reading the path in order, we obtain the following work
description for accomplishing the original task of grasping the
object:

Move jaws one unit left
Open jaws
Move jaws one unit left
Close jaws

Done.

~54~

This path demonstrates that we can express in a graph state space
the logical constraints involved in moving the jaws to an object
and grasping it. This is the first of many interesting logical
situations we éan model this way.
Another logical problem is solved automatically when we

ask that the jaws move from location 4, closed, to location 1,
closed. This translates to: change S from [ﬂ to [ﬂ The shortest
path is shown in Figure 12, and renders the work description

Move left one unit

Open

Move left one unit

Move left one unit

Close

Done.

T H
2 2
1 = closed | <
1 1 1 1 1
0 = open s -
3 3 3 3
. L . | > X
1 2 3 4 5 J
Figure 12

A SHORTEST PATH FROM S = Ej TO § = [J

-55-

1

The system "understands" that to move the jaws past the object, it
must open the jaws to straddle the object. Note that this same
group of commands, executed in another order, might be so irrelevant
to the desired task as to push the object off the table. Note, too,
tha; the more expensive but equally efficacious alternative path,
consisting of opening first and then moving three units left, was
avoided, along with all problems connected with bumbling about,

moving in wasteful circles, and other ineffective motions. Last,

if we code the commands in the allowed set using two bits:

open = 00
close = 01
move right = 10

move left = 11

then the pqth we just found can be represented compactly and
unambiguously by

11, 00, 11, 11, O1

This brief sequence of bits may be telemetered very cheaply, in terms
of power and bandwidth, to the remote computer for execution.

It is important to notice, throughout all of this, that
optimality, per se, is not our foremost goal. Rather, our goal is
to find a fairly direct path with some desirable characteristics.
Optimality criteria are our tools for accomplishing this. Our
problem is not so much to create a path from nothing as to cull a
reasonable path from countless millions of competing alternatives,
most of which do nothing. Optimality criteria are admirably suited

to doing this.

~56- .

The graph we have been using suffices to get the jaws to
the object, but as it stands, there is no way to express carrying.
This is because we have not distinguished motions of the empty jaws
from motions of the jaws when grasping the object. To remedy this,
consider first how the graph in Figure 11 would look if the object

were in location 1 rather than in location 2. See Figure 13:

1 H

-
.
-

b

N

» X

Figure 13

STATE SPACE WITH OBJECT IN LOCATION 1

Imagine now that the state vector takes the value [i] in Figure 11,
indicating that the jaws have grasped the‘object. Imagine further
that the object is then carried to location 1, but that we represent
the result of this by giving the state vector thé value [{] in Figure
13. 1If we draw Figures 11 and 13 together, with an edge labelled

1
Figure 14, which represents pictorially what we have just said verbally:

"Carry" joining [?} in Figure 11 and [{] in Figure 13, then we get

‘/P///’ From Figure 13

0 \ c RRY ojC 0jC oicC ojc
\
Object in 1 \— . -,

\ 1 3 4 3 / From Figure 11

\
\
\
\

0
Object in 2 \—
\

C GIR oj|C ofC 0
1 2

Figure 14

TWO STATE SPACES JOINED TOGETHER

The edges labelled "GR" correspond to the commands ''Grasp" and
"Release", while the edges iabelled "0C" correspond to "Open'" and
"Close". It is easy to generalize from Figure 14 if we recognize
that its two parts each correspond to different values of a new
state variable, the object’s location, denoted by Yor The state

vector then becomes

X5 xJ = x coordinate of jaws, = 1, ..., 5
S= Yo Y, = X coordinate of object, =1, ..., 5
H H = status of jaws, = 0, 1

We also have the new commands ''Grasp', '"Release'", 'Carry object left

one unit", and "Carry object right ome unit". "Carry" is, appropriately,

the only command which can change-yo. Naturally, it changes X5

simultaneously. When we draw all 5 possible versions of Figure 11

together, we get Figure 15:

1 2 3 4 5
N START
2 P X

H

1 2 3
4 I
1 2
END
5
1 2
Yo
Figure 15

STATE SPACE SUITABLE FOR ALL CARRYING TASKS

-59-

Each segment of this Figure (corresponding to a single value of yo)
expresses all the constraints we denoted above regarding 1) dodging
the object by straddling it, and 2) combining opening, moving and
closing in the correct order to accomplish grasping. &Each segment
also shows, when compared to the whole, that the object cannot move
by itself, while the jaws can. Taken as a whole, Figure 15 shows
that the object can move only if the closed jaws coincide with it and
they move together. Further, this cannot occur until after "Grasp'
has been executed, nor can it terminate until '"Release' has been
executed. Thus the new state space encompasses all the constraints
and information needed to plan moving and carrying tasks along a
one dimensional physical space containing one pair of jaws and one
object. Costs, though not shown, are consistent with Figure 11,
with the cost of '"Carry" being 4. This might reflect fuel cost

because the object is heavy, or risk cost because it might get dropped,

. 4 3
and so on. The path drawn between S = |2]| and § =|5| is sufficient
1 1

in principle to execute in its entirety the following task: Starting
with the jaws in 4, closed, and the object in 2, take the object to
5 and leave the jaws closed in 3.° Reading the path, we obtain the
following work description:

Move left one unit

Open

Move left one unit

Grasp

Carry.right 3 units

Release

Move left one unit

-60-

Close
Move left one unit

Done.

No matter where the object is in the space, any jaw motions will be
planned either to straddle the object if its location 1is not to

be changed (since moving it and replacing it would accomplish nothing
and would cost more than necessary) or to grasp it if carrying is

necessary to satisfy the operator's desire.

General Remarks

Note that, in all of the above examples, the paths carry
the state through many intervening points on the way to the final
value. These intermediate states can be thought of as subgoals to
the operator's goal. Yet, at the manipulator primitive level, the
intervening states are goals. Thus the conversion from the operator's
task specification to the solution path c&nsists of the replacement
of a goal at or near the operator's level of concern with a string
of goals closer to the manipulator's level of concern. Again,
execution of this path plan must be supervised by an executive
pfogram similar to that sketched at the beginning of this chapter.
Thé skeleton of this executive is easily deduced from the plan
itself, except for the recovery procedure. The result is the following

scheme:

-61-

DO A TASK
help! help!
no plan
4
translate it
receive
command 1 to obtain make motion
final state nitial stame plan, consult
model
return to the y
last success- a step execute each
fully achievedr has step of plan
state failed
) done
not possible

'

help!

This is a generalized version of the earlier program. The questions
unanswered by both prograﬁs are the same: How to determine that 23
step has failed, how to return to the last successfully achieved
state, how to determine whether or not this last state can be
achieved, and so on. Some of these questions were studied by Ermst,
many are being studied by Minsky.

It is at such points in tﬁe program that the operator might
have to intervene. The system may have fouled up so badly that it
‘cannot organize itself for the recovery: the object may have been
dropped, or pushed aside, or smashed so that no amount of pawing
about will locate it. The system may have damaged itself so that
its sensors or effectors cannot function, or the effectors may be

entangled in the environment and unable to move. When such things

-62-

happen, the operator may be unable to rectify things using commands
at the human primitive level. The language we have endowed him with
is rich within its context, but the context is really quite limited.
One cannot issue the command "Put the object back on the nearest
quantized location point," or "Reassemble the object," or 'Free the
jaws from that tangle of pipes,” because the translator has no
points in the state space with which to represent the current
disorganized condition of the environment or no commands with which
to carry out the needed alterations to this condition. This is in
spite of the fact that the operator may know full well what needs

to be done. He just can't say it with the language we have given him,‘
any more than a piano player can play notes that are in the cracks
between the keys.

This language problem, which will be discussed more in a
later chapter, is not thg only problem facing designers of Supervisory
Controlled Manipulator systems. Another difficulty is the amount of
computing time or storage space required to do the calculations.

Some aspects of this will arise regardless of the programming schemes
used. In our case, the use of state space models threatens to

demand huge amounts of storage space. The above examples indicate
the extent of this: our physical space is only one dimensional with

5 points; to handle jaws and one object, we have five graphs of two
dimensions each, totalling 50 points. (Figure 15). The same model;
extended to cover a three dimensional space of only 10 points per
axis, would contain 2 x 106 points. Attention to this problem, the

A

"Curse of Dimensionality," will also be paid in a later chapter.

-63-

We summarize the results of this chapter as follows: A
state space model of a manipulation task is a space representing
alternative situations (positions or orientations of jawé and objects)
which could be achieved using commands from a limited static set
at the manipulator primitive level. ’Equivalently, since these comhands
can change the task site, the state space represents all thevtasks
which can be accomplished using arbitrary. sequences of the allowed
commands .

We demonstrated that the operator could express his desires
in terms of new states he wished the system to occupy, and that this
capability put the operator in control of the task site. We showed
that state space models could express some non-trivial logical amdi
physical constraints implicit in the successful execution of grasping,
carrying, dodging obstacles, and so on. The operator's abilitybto
influence the nature of the sfstem's behavior by altering the values
of the costs was also demonstrated. Finally, the task of deducing
the correct sequence of commands to be used, or the correct sequence
of subgoals to be achieved, was reduced to a shortest path problem.

In the next chapter, we shall consider several intriguing
examples in which the ability of graphs to express order relations
will be further exploited. The chapter after that will go into
procedﬁres by which the local computer finds shortest paths, and
some of the interesting problems which arise when the state spaces

get very large.

64—

CHAPTER III

SOME EXAMPLES OF STATE SPACE MODELS OF MANIPULATION TASKS

In the previous chapter, we saw how graphs can store the
logical and physical constraints required to perform basic obstacle
avoidance, grasping, and carrying. In this chapter, we consider
six non-trivial examples in which various properties of manipulation
are expressed. They are

1) Simple decision-making

2) Pushing an object with the jaws

3) Pushing an object with another object

4) Maneuvering an object through a crowded environment

5) Manipulating with two pairs of jaws

6) Complex ordering and decision-making

1) As an example of simple decision-making, consider
Figure 1. A square object and a round object lie on a table which
has five quantized locations. The square object is in location 1,

while the round object is in location 3:

Figure 1

THE DODGING PROBLEM

We want to move the square object to location 5. 1Is it better to
move the square object around the round object (via locations 2 or 4)
or move the round object ouc of the way and then move the square
object directly to location 5 via location 3? Much depends, of
course, on what we mean by 'better."

The decision problem involved here can iead to very large
and complgx graphs, because the manipulator jaws do not move empty
or grasp free of cost. As a result, a complete solution would
require a state vector containing the locations of each object plus
Jaws, for each of the two values of the jaw status variable H. Thus
the graph would consist of two connected subgraphs, one for each
value of H, each having three dimensions with 5 x 5 x 5 points.
Since we can't draw this easily, let us assume that empty jaw
movements are essentially free, and graph instead only the positions
of the two objects. The result is complex enough. The state vector
consists of the location number of each object, giving us a two

. i
dimensional state space. See Figure 2. A point in this space

h|
indicates that the round object is in location i while the square
object is in location j. Each horizontal edge represents moving the
round object while holding the square object fixed, and the reverse

i

siﬁce both objects cannot occupy the same location simultaneously.

for each vertical edge. The diagonal vertices [ﬁ] are forbidden
Despite its complexity, this graph, like all the others we consider,
can be generated solely by considering the physical possibilities

at each state, quite without regard for what can be done at any other
state. We need never map out or try to comprehend all combinations

of moves at once. The graph takes care of that for us.

‘ Location of

Square Object
Move Round
5 L G o
Object
4 L
Move
Square
Object
3 b
2 &
1 L

-8 Location of
Round Object

Figure 2
STATE SPACE FOR DODGING PROBLEM. SOLID EDGES SHOW MOVES OF
SQUARE OBJECT. DOTTED EDGES SHOW MOVES OF ROUND OBJECT.

The system shown in Figure 1 then occuﬁies state [i] , and
any of the states E] ’ E] s E] , OT [g] will suffice as the
terminal state, so far as the operator is concerned.

Costs might be assigned in a variety of ways. The square
object might be heavier than the round, or the round harder to grasp
reliably than the square. Either consideration would cause all moves
of one object to be higher in cost than moves Sf the other. Or,

moves like 1-2 are longer than moves like 1-3. Yet again, it might

-67~

be felt that moving the square object into 2 or 4 while the round
object is close by in 3 is risky due to close clearance, and would
be less costly in risk if the square object were moved to 2 only
after the round one has been shifted to 4, or vice versa. These
last two considerations would make some moves more costly on the basis
of what states they join, rather than what object is being moved.
We shall say no more about this example, since the interesting
points have been made.

2) The next example is that of using the jaws to push
an object. This we develop quickly using Figures 8 and 15 of

Chapter II. The jaws can push the object to the right if Yo ~ =1,

x5

and can push the object to the left if Yo = %3 = -1, each relation

J
implying that the jaws are adjacent to the object on the appropriate

side. The system must be made to understand that, during pushing,

the jaws and object both move so that the relation Vo = X3 = %1 (as

J
the case may be) continues to be satisfied all the time., In additionm,

the system must understand that the object cannot be pulled to the

left when S 1 or to the right when A -1. Ve

accomplish all this by connecting points obeying Yo ~ %3 = 1 with

directed arcs labelled "Push right," so that the arrows allow X; and

Yo only to increase. Points obeying Yo = X3 = -1 are connected by

arcs labelled "Push left," with the arrow indicating that Xg and

y, are allowed only to decrease. The result is Figure 3.

-68~

H
1 Move
e
Empty Jaws
0 -
X
1\ 1 2 3l 4 5 J
s,

]h—,-x
5 J

) Xy

)
4
1 2 3 - 4 5
X, = location of
J

jaws
Vo = location of

object 5
H = jaw status R 2 3 ‘ X5

3{? if jaws are closed

0 if jaws are open

Figure 3

STATE SPACE ALLOWING JAWS TO PUSH THE OBJECT

Note that to push right and then push left, the jaws must, after

pushing right, first open, straddle the object to get to the other

-69-

side, then close and initiate pushing left. The graph also shows
that if the object is in 5, say, then it cannot be pushed right at
all, nor pushed left until it has been carried at least to location 4,
since there is no room to the object's right in which to put the jaws.
So these six new lines add a lot of information. This is our first
example of a mixed graph model of a manipulation.task.

3) The next example is that of using one object to push
another object into a hole. (Pushing directly by the jaws is not

allowed.) The physical space is shown in Figure 4.

Slot Just Big Enough for an Object

Figure 4

PHYSICAL SPACE FOR PUSHING PROBLEM

There are two objects, a and b, a being nearer the slot than b.
The size of the slot demands that a be pushed into. the slot, with
b acting as pusher, held in turn by tﬁe jaws. The motion of the
,objects is our major concern, so we ignore the motion of the jaws
for the time being. The state vector is then

X x = location of a, = 1, ..., 6

(o
i

y y = location of b, 1, .v., 6

-70~

and the corresponding state space is shown in Figure 5, with the

allowed commands written on the appropriate arcs and edges.

Push b Right with

a
‘ y = Location of b // //Push a Left with b

6L ®

@+ Carry a

jo

I Carry

End

X = Location of a

Figure 5

STATE SPACE FOR THE PUSHING PROBLEM

The arcs along the sub-diagonal are not condensed to edges in order
to show that certain pushing is allowed but no pulling.

Say a is in location 3 and b is in location 1, and we ask
for a to be put into the slot and b to end up in location 1. Then
the initial state is i and the final state is ‘V?;l . It is clear that
the system will "figure out" that b must push a into the slot in
order that the task be accomplished. If we decide that pushing

is more risky than carrying (the pushed object might fall away to

one side), we can charge more for pushing than. for carrying. Then the

-71-

resulting path, regardless of its other characteristics, will

4 5

"other characteristics," however, could be very unsatisfactory.

contain exactly one 'Push," the required one from [%] to Ej. The

If carrying costs the same for a and b, while empty jaw motions are
free, then zig-zag paths from B:] to [Z:] are as cheap as any. They
imply that a is carried part way to 5, then b carried part way to 4,
then a carried a little farther, then b a little farther, until
finally a is in 5 and b is in 4, ready for pushing. This kind of
behavior ¢an be eliminated by charging for motions of the empty jaws.
This requires that the jaws' position and H be added to the state
vector. Then a minimum cost path would consist of carrying a
directly to‘5, carrying b directly to 4, then pushing a into 6 and
carrying b back to 1.

4) 1In the following example, we maneuver a long thin.spar
through a érowded environmen;.. Here the inter#ctions between the
environment and the spar's position and orientation are crucial at
each step. Since only one object 1is involved, we again ignore the
jaws and take the state vector to be
X = x coordinate of object

y = y coordinate of object

a ={0 if object is parallel to x axis
1 if object is parallel to y axis

len
Y
R < A

The usual carry commands change x and y, while a commandrcalled

"Rotate'" changes a. Thus both position and orientation of the spar
are quantized. The physical space is shown in Figure 6. Walls are
shown as open rectangles, while the two possible orientations of the

spar are shown by cross lines at each possible object position.

-72-

lm\Spar

o X

Figure 6

PHYSICAL SPACE FOR THE SPAR PROBLEM

The challenge is provided by the doorways, which allow the spar and
jaws to pass axially but not athwart. The jaws can open wide

enough to grasp the object only one way. See Figure 7.

s/] —[not ok
L 4
R .
ok
" 14 [ox
a) b)
Figure 7

a) DOORWAYS AND PASSAGE OF. A THIN OBJECT. b) GRASPING THE
OBJECT IN ONLY ONE ORIENTATION

-73~

We assume that the object is in the jaws at the beginning and end of
the task.

A good way to visualize the graph associated with this
problem is to}put all values of S for which a = 0 on one plane, and
all values of S for which o = 1 on another plane, drawn so that it
aﬁpears to lie behind the first plane. We assumé for illustration
that all carries cost 2 while rotations cost 3. Let the object be
at location (2, 2), with orientation parallel to the y axis, and say
we want it moved to location (3, 3) and end up oriented parallel to
the x axis. Then the initial state is g and the final state is [?J .
The resulting graph appears in Figure 8,lwhile two solution paths ;
of equal cost appear in Figure 9. The solution path is visualized
on a sketch of the environment in Figure 10. An interesting feature
of these paths is that they do not "look like' the most direct route.
This is a feature we get uged to seeing in optimal path solutionms.
Closer examination reveals that the optimal paths, by ﬁoving the
object away from the desired final state,'are able to save two rotations
by spending a little more distance. Again, if we read the path,
we get a list of the required carries and rotates in the correct
order. A